Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 8 entries in the Bibliography.


Showing entries from 1 through 8


2021

Simulating the Ion Precipitation From the Inner Magnetosphere by H-Band and He-Band Electro Magnetic Ion Cyclotron Waves

Abstract During geomagnetic storms, magnetospheric wave activity drives the ion precipitation which can become an important source of energy flux into the ionosphere and strongly affect the dynamics of the magnetosphere-ionosphere coupling. In this study, we investigate the role of Electro Magnetic Ion Cyclotron (EMIC) waves in causing ion precipitation into the ionosphere using simulations from the RAM-SCBE model with and without EMIC waves included. The global distribution of H-band and He-band EMIC wave intensity in the model is based on three different EMIC wave models statistically derived from satellite measurements. Comparisons among the simulations and with observations suggest that the EMIC wave model based on recent Van Allen Probes observations is the best in reproducing the realistic ion precipitation into the ionosphere. Specifically, the maximum precipitating proton fluxes appear at L = 4–5 in the afternoon-to-night sector which is in good agreement with statistical results, and the temporal evolution of integrated proton energy fluxes at auroral latitudes is consistent with earlier studies of the stormtime precipitating proton energy fluxes and vary in close relation to the SYM-H index. Besides, the simulations with this wave model can account for the enhanced precipitation of < 20 keV proton energy fluxes at regions closer to Earth (L < 5) as measured by NOAA/POES satellites, and reproduce reasonably well the intensity of <30 keV proton energy fluxes measured by DMSP satellites. It is suggested that the inclusion of H-band EMIC waves improves the intensity of precipitation in the model leading to better agreement with the NOAA/POES data.

Shreedevi, P.; Yu, Yiqun; Ni, Binbin; Saikin, Anthony; Jordanova, Vania;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028553

EMIC waves; Geomagnetic storms; proton precipitation; ring current modeling; MI coupling; wave particle interaction; Van Allen Probes

Observations of Particle Loss due to Injection-Associated EMIC Waves

AbstractWe report on observations of electromagnetic ion cyclotron (EMIC) waves and their interactions with injected ring current particles and high energy radiation belt electrons. The magnetic field experiment aboard the twin Van Allen Probes spacecraft measured EMIC waves near L = 5.5 − 6. Particle data from the spacecraft show that the waves were associated with particle injections. The wave activity was also observed by a ground-based magnetometer near the spacecraft geomagnetic footprint over a more extensive temporal range. Phase space density (PSD) profiles, calculated from directional differential electron flux data from Van Allen Probes, show that there was a significant energy-dependent relativistic electron dropout over a limited L-shell range during and after the EMIC wave activity. In addition, the NOAA spacecraft observed relativistic electron precipitation associated with the EMIC waves near the footprint of the Van Allen Probes spacecraft. The observations suggest EMIC wave-induced relativistic electron loss in the radiation belt.

Kim, Hyomin; Schiller, Quintin; Engebretson, Mark; Noh, Sungjun; Kuzichev, Ilya; Lanzerotti, Louis; Gerrard, Andrew; Kim, Khan-Hyuk; Lessard, Marc; Spence, Harlan; Lee, Dae-Young; Matzka, Jürgen; Fromm, Tanja;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028503

EMIC waves; ring current; Radiation belt; wave particle interaction; injection; Particle precipitation; Van Allen Probes

2019

Cyclotron Acceleration of Relativistic Electrons Through Landau Resonance With Obliquely Propagating Whistler-Mode Chorus Emissions

Efficient acceleration of relativistic electrons at Landau resonance with obliquely propagating whistler-mode chorus emissions is confirmed by theory, simulation, and observation. The acceleration is due to the perpendicular component of the wave electric field. We first review theoretical analysis of nonlinear motion of resonant electrons interacting with obliquely propagating whistler-mode chorus. We have derived formulae of inhomogeneity factors for Landau and cyclotron resonances to analyze nonlinear wave trapping of energetic electrons by an obliquely propagating chorus element. We performed test particle simulations to confirm that nonlinear wave trapping by both Landau and cyclotron resonances can take place for a wide range of energies. For an element of large amplitude chorus waves observed by the Van Allen Probes, we have performed detailed analyses of the wave form data based on theoretical framework of nonlinear trapping of resonant electrons. We compare the efficiencies of accelerations by cyclotron and Landau resonances. We find significant acceleration can take place both in Landau and cyclotron resonances. What controls the dynamics of relativistic electrons in the Landau resonance is the perpendicular field components rather than the parallel electric field of the oblique chorus wave. In evaluating the efficiency of nonlinear trapping, we have taken into account variation of the wave trapping potential structure controlled by the inhomogeneity factors.

Omura, Yoshiharu; Hsieh, Yi-Kai; Foster, John; Erickson, Philip; Kletzing, Craig; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026374

inner magnetosphere; nonlinear process; Radiation belts; relativistic electrons; Van Allen Probes; wave particle interaction; whistler-mode chorus

2018

A Statistical Survey of Radiation Belt Dropouts Observed by Van Allen Probes

A statistical analysis on the radiation belt dropouts is performed based on 4 years of electron phase space density data from the Van Allen Probes. The μ, K, and L* dependence of dropouts and their driving mechanisms and geomagnetic and solar wind conditions are investigated using electron phase space density data sets for the first time. Our results suggest that electronmagnetic ion cyclotron (EMIC) wave scattering is the dominant dropout mechanism at low L* region, which requires the most active geomagnetic and solar wind conditions. In contrast, dropouts at high L* have a higher occurrence and are due to a combination of EMIC wave scattering and outward radial diffusion associated with magnetopause shadowing. In addition, outward radial diffusion at high L* is found to cause larger dropouts than EMIC wave scattering and is accompanied with active geomagnetic and solar wind drivers.

Xiang, Zheng; Tu, Weichao; Ni, Binbin; Henderson, M.; Cao, Xing;

Published by: Geophysical Research Letters      Published on: 08/2018

YEAR: 2018     DOI: 10.1029/2018GL078907

EMIC wave; magnetopause shadowing; Phase space density; radial diffusion; radiation belt dropout; Van Allen Probes; wave particle interaction

Observation of Oblique Lower Band Chorus Generated by Nonlinear Three-Wave Interaction

Oblique whistler mode waves have been suggested to play an important role in radiation belt electron dynamics. Recently, Fu et al. [2017] proposed that highly oblique lower band whistler waves could be generated by nonlinear three-wave resonance. Here we present the first observational evidence of such process, using Van Allen Probes data, where an oblique lower band chorus wave is generated by two quasi-parallel waves through nonlinear three-wave interaction. The wave resonance condition is satisfied even in the presence of frequency chirping of one of the pump waves. Different from the simulation results of Fu et al. [2017], simultaneous particle data do not show a plateau in the electron distribution, which could be due to the very weak intensity of the generated waves. These results should help to better understand the generation of oblique waves in the inner magnetosphere and their relative roles in energetic electron dynamics.

Teng, S.; Zhao, J.; Tao, X.; Wang, S.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 06/2018

YEAR: 2018     DOI: 10.1029/2018GL078765

Oblique lower band chorus; radiation belt physics; Van Allen Probes; wave particle interaction; wave-wave interaction

2017

Contemporaneous EMIC and Whistler-Mode Waves: Observations and Consequences for MeV Electron Loss

The high variability of relativistic (MeV) electron fluxes in the Earth\textquoterights radiation belts is partly controlled by loss processes involving resonant interactions with electromagnetic ion cyclotron (EMIC) and whistler-mode waves. But as previous statistical models were generated independently for each wave mode, whether simultaneous electron scattering by the two wave types has global importance remains an open question. Using >3 years of simultaneous Van Allen Probes and THEMIS measurements, we explore the contemporaneous presence of EMIC and whistler-mode waves in the same L-shell, albeit at different local times, determining the distribution of wave and plasma parameters as a function of L, Kp, and AE. We derive electron lifetimes from observations and provide the first statistics of combined effects of EMIC and whistler-mode wave scattering on MeV electrons as a function of L and geomagnetic activity. We show that MeV electron lifetimes are often strongly reduced by such combined scattering.

Zhang, X.-J.; Mourenas, D.; Artemyev, A.; Angelopoulos, V.; Thorne, R.;

Published by: Geophysical Research Letters      Published on: 07/2017

YEAR: 2017     DOI: 10.1002/2017GL073886

electron lifetime; EMIC waves; Rediation belts; relativistic electron loss; Van Allen Probes; wave particle interaction; WHISTLER-MODE WAVES

2016

Electron butterfly distribution modulation by magnetosonic waves

The butterfly pitch angle distribution is observed as a dip in an otherwise normal distribution of electrons centered about αeq=90\textdegree. During storm times, the formation of the butterfly distribution on the nightside magnetosphere has been attributed to L shell splitting combined with magnetopause shadowing and strong positive radial flux gradients. It has been shown that this distribution can be caused by combined chorus and magnetosonic wave scattering where the two waves work together but at different local times. Presented in our study is an event on 21 August 2013, using Van Allen Probe measurements, where a butterfly distribution formation is modulated by local magnetosonic coherent magnetosonic waves intensity. Transition from normal to butterfly distributions coincides with rising magnetosonic wave intensity while an opposite transition occurs when wave intensity diminishes. We propose that bounce resonance with waves is the underlying process responsible for such rapid modulation, which is confirmed by our test particle simulation.

Maldonado, Armando; Chen, Lunjin; Claudepierre, Seth; Bortnik, Jacob; Thorne, Richard; Spence, Harlan;

Published by: Geophysical Research Letters      Published on: 04/2016

YEAR: 2016     DOI: 10.1002/2016GL068161

butterfly; electron; magnetosonic; Magnetosphere; Van Allen Probes; wave particle interaction

2015

Nonlinear Bounce Resonances between Magnetosonic Waves and Equatorially Mirroring Electrons

Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the fluxof these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from a equatorial pitch angle of 90 degrees down to lower values. However this mechanism has not been uniquely identified yet. Here, we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can occur at the first three harmonics of the bounce frequency (nωb, n = 1 , 2, and 3 ) and can effectively reduce the equatorial pitch angle to values where resonant scattering by whistler-mode waves becomes possible. We demonstrate that the nature of bounce resonance is nonlinear and we propose a nonlinear oscillation model for characterizing bounce resonances using two key parameters, effective wave amplitude \~A and normalized wave number inline image. The threshold for higher harmonic resonance is more strict, favoring higher \~A and inline image and the change in equatorial pitch angle is strongly controlled by inline image. We also investigate the dependence of bounce resonance effects on various physical parameters, including wave amplitude, frequency, wave normal angle and initial phase, plasmadensity, and electron energy. It is found that the effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant interaction might lead to an observed pitch angle distribution with a minimum at 90o.

Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard; Li, Jinxing; Dai, Lei; Zhan, Xiaoya;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2015

YEAR: 2015     DOI: 10.1002/2015JA021174

bounce resonance; equatorioal noise; magnetosonic waves; nonlinear; Radiation belt; wave particle interaction



  1